

Language Control Structures
for Easy Electronic Visualization

Contro l s truc tures are the
1 program- flow manipulation features

of the language that you use to beat
your computer into submission.
BASIC's control structures are em­
bodied in the RUN, GOTO, GOSUB,
and RETURN keywords and a few
functions, certainly an impoverished
set. Highly structured languages like
Pascal are rigidly limited to the con­
trol structure of subroutines. Lowly
structured approaches like assembly
language are necessary to implement

la

Dr Thomas DeFanti
Electronic Visualization Laboratory

University of Illinois at Chicago Circle
POB 4348

Chicago IL 60680

higher-level languages and real-time
systems, because the lack of enforced
structure allows an infinite variety of
control structures to be used at a cost
of great human effort. The execution­
speed gain in using assembly
language is more due to the efficient
building of customized tables and
linked lists than to efficiency in add­
ing, subtracting, multiplying, and
dividing numbers.

Assembler coding is by no means
easy. Note the word "easy" : it's

lb

important because in one sense it
means "accessible. " In this case, it's
your access to complex electronic
visualizations.

Electronic visualizations are impor­
tan t because p r od u c ing and
manipulating images, especially
animated ones, is a truly multidimen­
sional task which reflects our real­
world interactions much more than
maintaining an accurate laundry list
or printing payroll checks. Producing
them demands a lot from software,

. .

Photos la and lb: Sample output from the GRASS/Image Processor. Photo la was made by Guenther Tetz, and photo l b by Dan
Sandin and the author.

90 November 1980 © BYTE Publications Inc Circle 55 on Inquiry card. _..,.

and making their access easy requires
paying attention to the provision of
rich control structures in a language.

Electronic Visualization is an inten­
tionally broad term meant to conjure
thoughts of computer graphics,
animation, image processing, video
synthesis, and even advanced word­
processing. Anyone successfully pro­
ducing images for communication is
unlikely to reject a technique for
reasons of alg·orithmic purity (as a
computer scientist might feel forced
to do) . Computer hobbyists use the
tools at hand, and electronic
visualization is the means to the end
and the end product of using these
tools. Simultaneously, it can be both
because we are seeing the vast
increase of real-time imaging systems,
even in microcomputer-based con­
figurations; and controlling these
real-time systems can be as feedback­
intensive as playing a musical instru­
ment or driving a racing car.

Just to unify the concepts so far,
think about this question: what
besides the cosmetic packaging
governs our choice of a musical
instrument or an automobile? It is a
combination of capability and user

A CREATION OF COMPUTER HEAD WARE

I!Jj(J)(jj?Jfj[Jf]f2
(Wow./ How'd All That Stuff get In There?)

A sophisticated,
self-indexing filing
system-flexible,
infinitely useful and easy
to use, that adapts to
your needs.

WHATSIT's unique capabilities:

Multiple Entries allowed per
field: For example, a
bibliographic file can
associate each work with any
number of authors. WHATSIT
allocates file space as
needed for each.

New Data Fields added "on
the fly": You 're not confined
to a particular "record
layout" that must be declared
in advance. Your file evolves
to fit your needs.

The most successful
approaches to date are
basically highly
developed, beautifully
evolved kluges .

control, of course: having one
without the other is useless . So why
are the programming languages cur­
rently available so impoverished on
the control-structure side?

Perhaps it is because computers
were invented to process payrolls,
not images . Television, on the other
hand, is image-oriented and currently
uses a host of presently emerging real­
time digital techniques and increas­
ingly flexible control structures . As a
matter of fact, just about all the
television you see these days is
digitally processed for purposes of
synchronization.

Television is a high-speed medium
conducive to parallel and pipeline
processing. You are driving television
rather than generating it. TV cameras
are on all the time and you, as direc-

Immediate Response: Even in
the largest files, WHATSIT
responds in seconds, thanks
to pointer linkages and hash
coding.

Conversational Dialogue:
Query and update requests
may be intermixed in any
order, without returning to a
"menu selector. "

NEW
Apple II Plus

WHATSIT at special
introductory price:

$95
(Regular price, $150

after December 31, 1980).

WHATSIT comes ready to run on
your Apple, Apple II Plus, AlpaMicro
NorthStar, or CP/M computer. See
your dealer for a full
demonstration . . . or write or call:

lliltll)llil'l' �ortwar{Z
P.O. Box 14815 • San Francisco, CA 94114 • Tel: (415) 621-2106

92 November 1980 © BYfE Publications Inc Circle 56 on inquiry card.

tor, are fading, switching, adding
titles and constantly throwing away
images that you don't want . Control
is the name of the game.

The television folk are not about to
give up rich, real-time control struc­
tures and the computer folk won't
give up language. How to get them
together is the essence of the task at
hand.

Getting Computers and Television
Technology Together

Looking at the history of control
structures for computer graphics and
for television, we see that most
computer-graphics usage, with the
obvious and exciting exception of
video games, is some variety of non­
real-time plotting. This is where the
money is and where the language
development for computer-aided
design has been focused . No
manufacturer of equipment for com­
puter graphics (excepting the video­
game people) now depends on anima­
tion for solvency. Plotting is slow and
often merely the side output of a large
FORTRAN finite-element analysis
program. Visual aesthetics are rarely
the primary concern, if any concern
at all . People who use such systems
are highly skilled and highly paid
technicians who became that way by
having to deal with plotting packages
as a condition of employment . If the
job were easy, they wouldn't get paid
so much.

We are just reaching the point of
e lec tronica l ly genera t ing and
manipulating images, in real time,
under program control . How do we
design languages to deal with real
time? Or, more important, why do
we want such a language, an
a l p h a n u m e r i c s tr i n g - o r i e n ted
language, at all? Why not use picture­
based languages with symbols for
motions and timing?

How Can You Control Images
Easily?

After about ten years of living with
this obvious and nagging question,
some conclusions became clear. First,
purist approaches to electronic
visualization are hopeless . Image con­
trol employs a hybrid of languages,
several input devices, picture­
oriented commands, custom hard­
ware, and a smattering of idiosyn­
crasies . The m o s t successful
approaches to date are basically

highly developed, beautifully evolved
kluges. We know what "purism'' in
coding FORTRAN and BASIC does
to image production. Purism in
television technique eliminates com­
puter graphics as we know it. So how
about using graphic symbols to save
the day?

Using symbols in a menu and some
sort of manual-selection mechanism
is an approach taken by many FOR­
TRAN graphics systems. This limits
the number of symbols to those
defined in the menu and there is no
user-level extensibility in that you
cannot create new symbols out of

sequences of old symbols, which
eliminates the one truly unique
feature of computers. To state it
bluntly, you can't program with a
menu.

What happens, however, if you do
find a system that provides for the
combination of nonalphanumeric
symbols in meaningful ways? In an
extremely advanced case, it should
look something like Japanese, and
you might note that the language
used to program computers in Japan
is a phonetic alphanumeric transcrip­
tion of their language. They do not
program in their extremely beautiful

Tax Practitioners I CPAs :
Successful Tax Professional Reveals
Effective Practice Development
Formula

" Every tax
professional. .. whether he

is desirous of expanding

his practice, or just
better serving his existing

clientele (or both) ... can
profit from this system."

A re y o u satisfied w i t h the growth of your tax practice?

Successful practice deve lopment is a perplex i n g problem facing all tax professionals
today. The field tested MIC ROT AX professional tax preparation software package
can provide you with a n i n novative solution .. . and a t the same t i me enable you to

serve your existing cl ientele i n a more professional and t imely manner.

Consider the advantages this state-of-the-art package can b r i n g to your practice:
• Compl�te System...

.
• Complete In-Office Security

... containing Federal Individual. Corporate AND State -no risk of sensitive client information falling into the
Individual returns. The system is designed to accept in- wrong hands.
formation, summerize the data. compute the tax, and
print th'e returns; including •II forms and schedules re·
qui red by the I .R.S.

• Versatile

Micro Tax is cost-efficient for practices preparing as few
as 20 returns per tax season ... but comes with a fast
mode. capable of processing 2.000 returns-or more!

• Best Of All ...

... and this is really exciting ... MicroTa_x allows you to of·
fer preye•r·end Ux pl•nnlng to your
clients-enabling you to predict the potential liability
and take steps to minimize the tax in a timely manner.

• Saves Time

Compared with conventional service bureaus, Micro Tax
offers virtually instant turn-around time.

• More Professional

Greater range of services a l lows you to present a more
professional appearance to your clients.

• Requirements:
CP/M, Microsoft Basic & 48K Memory

• Introductory Price ('til Dec. 1, 1 980)
Micro Tax is available as a three part system:

Federal Individual $750.00 Annual Updates
State Individual 250.00 Are Available
Corporate 250.00

Micro Tax is a versatile and money-saving tool that NO tax professional should be Without (it 's been
selected for use by COMPU-TAX of Utah).

Call or write today for additional information, or your nearest dealer. Problems that can't wait?
Call Don White our V.P. of Research and Development, direct, at (213) 668-0238.

Circle 272 for microTax

MICIOTGH
Income Tax Software Specialists

E�clusive Dosl<lbU!O<
S.O.F.T.W.A.R.E.-1; Inc.

Circle 58 for SOFTWARE Inc.

Available at most
Professional computer retailers

3600 W I LS H I R E BOU LEVARD, # 1 5 1 0, LOS ANG ELES, CALIFO R N IA 90010 • (21 3) 738·9972

and rich symbol set . Eliminating
alphanumeric languages is not such a
hot idea, except in turnkey systems.

The second conclusion gestating
for the past ten years is that complete
parallelism is necessary for control­
ling images in meaningful ways. You
simply must be able to develop
sequences independently and merge
them in ways that do not necessitate
rewriting the programs. Xerox's
Smalltalk and certain other languages
have this capability, as do television
technology and everyday life: making
this parallelism easily accessible takes
real care.

The third conclusion is that a flexi­
ble priority scheme is needed. S()m�
tasks are more important than others,
just as in real life and computer
operating systems. It is essential to
give this capability to the user of an
electronic visualization system.

Fourth, providing for user exten­
sibility at several levels is the only
way people will easily be able to use a
system for applications not envi­
sioned by the designer . I will discuss
this later.

Fifth, the system must be software­
fault tolerant . Fault-tolerant hard­
ware has been a research area of great
importance to real-time control
systems, yet language purists still
think people should solve problems in
structured, orthodox, algorithmic
ways. A computer language should
provide as many paths to a given
communication as possible, as
natural languages do, and the kind of
error handling that a friend would
offer. Allowing nonstructured, non­
procedural, "seat-of-the-pants" pro­
gramming is often the only salvation
when the final goal is aesthetically
defined, and is, perhaps, not at all
clear. It has been called "fuzzy
programming," and it's easy to throw
in the recursive, value-returning,
clever s tructured-programming
capabilities as well, but limiting
yourself to these latter approaches
stifles human creativity, problem­
solving, and sideways thinking.

Zgrass - A Language for Easy
Electronic Visualization

Zgrass is a programming language
and operating system written in
assembly language for the Z80
microprocessor by Nola Donato, Jay
Fenton, and me. Not surprisingly, it
embodies all the control structures
mentioned so far in this article and

2a

2b

2c

FDR SIDEWAYS
BALLVDID VIDEO

Photos 2a, 2b, and 2c: Sample output from the first Zgrass system, with a resolution of
160 by 102 pixels, with 2 bits per pixel. Photo 2a was made by Copper Giloth, and
photos 2b and 2c by Nola Donato.

96 November 1980 © BYfE Publications Inc

has been in development for ten
years.

Zgrass started out as GRASS
(Graphics Symbiosis System). a
language designed to bring the
immense complexity of a Digital
Equipment Corporation PDP-11/45
and as Vector General 3DR Display
system within the grasp of artists and
educators at Ohio State University. It
has high levels of interaction,
parallelism, priority, and tree­
structured manipulations of vector­
defined objects. Photos from this
system can be seen in "About the
Cover. . . And Some More of the
Same," in the October 1977 BYTE,
page 22 .

GRASS depends on $120,000 of
equipment to run - rather expensive
for a single-user system - but it is
one of the first highly developed non­
FORTRAN interact ive graphics
systems for use by artists.

In 1973, Dan Sandin, inventor of
the Image Processor, brought color
television usage to our computer
graphics work at the University of Il­
linois at Chicago Circle . Dan and I
develofed most of the ideas about
contra structures presented here.
Photos 1a and 1b show some output
from the GRASS/Image Processor
system.

Generating a complete program­
ming language with parsers, com­
pilers, and graphics takes a lot of
human effort . More than ten person­
years of programming were devoted
to GRASS, aided by generous sup­
port from the National Science Foun­
dation, National Endowment for the
Arts, and others.

GRASS is totally oriented toward
real-time generation and control of
images for the simple reason that
television cannot easily be slowed
down for long and/ or time-lapse ex­
posures as can be done with film. The
control structures for GRASS were
developed ad hoc and became in­
creasingly idiosyncra t ic . N o la
Donato, a postgraduate student of
mine, decided to teach me how to
generalize many of the programming­
language concepts. The result was
GRASS3, which later became Zgrass.

In 1977, I was led to Jeff
Frederiksen a t Dave N u t t ing
Associates, who was developing a
deluxe home computer for Bally Cor­
poration using the custom integrated
circuits they had developed for the
Bally Arcade video game. The pros-

Photo 3: Sample output from a later version of Zgrass, with a resolution of 320 by 204 pixels with 2 b
.
its per pixel. Photo 3 was

.
made

by Frank Dietrich.

pect of developing a language for
fun, one that had user-orientation as
the benchmark rather than how many
FOR-NEXT loops you could execute
per unit time was too good to pass
up . I was contracted to produce
Zgrass, and in a year, Nola Donato,
Jay Fenton (a legendary wizard of
video games and pinball-machine
operating systems), and I had
generated 9000 lines of code. (Much
of the work was done not in a lab but
in a cabin in the woods of
Wisconsin!) Examples of output from
this system are seen in photos 2a, 2b,
and 2c. Note that the resolution of
this first Zgrass machine is 160 by 102
pixels (ie : picture elements), with 2
bits per pixel.

Some confusion arose about
whether we were producing a hob­
byist machine or a home computer
for consumers, so the project was
suspended. Even now nobody really
knows what a "consumer computer"
is supposed to be .

98 November 1980 © BYfE Publications Inc

From consulting with less en­
lightened would-be consumer com­
puter manufacturers, I have perceiv­
ed that they follow the rather
negative view of consumerism. (Few
people reading this article would be
considered only consumers - I
assume that BYTE readers are mostly
hobbyists or professionals .) Con­
sumerism is based on great market
penetration, and the big question is:
"How do you get 90 % market
penetration like color TV?"

It is also based on consuming, that
is, wearing out or getting sick of
hardware and software so you go buy
more and consume it. The user is
expected to supply no creativity, just
assume a passive, susceptible-to­
entertainment pose - this reminds
you of television watching, doesn't it?
Well, anything requiring creative
energy is akin to hobbyism.

Consumer computers do exist in
the form of video games that you can
get bored with and buy more - even
the advertisements invariably cite the

number of new games to be available
each month. I don't know how to
write a programming language that
wears out, though. User-extensibility
is planned "nonobsolescence. " Zgrass
is not a consumer language by current
standards.

The project is on active status
again, but this time with a hob­
byist/professional orientation. We
believe there are many people who
want a recordable image-producing
system for around $3000. The current
configuration includes :

• ZBO processor with 16 K bytes of
EPROM and 48 K bytes of pro­
grammable memory

• custom graphics integrated circuits
and floating-point hardware

• dual UARTs (universal asyn­
chronous receiver I transmitters)
for connection to larger com­
puters, printers, etc

• RBG (red, blue, green) monitor for
best color resolution

• alphanumeric terminal (which the
user provides)

• provision for floppy disks, tablet,
other l/0 (input! output) devices

Eight Zgrass units in this configura­
tion have been alive and well and tied
into the Bell-Laboratory-developed
UNIX operating system since January
1980. Although I have only discussed
software design, I must mention that
the hardware to test the concepts real­
ly exists! See photo 3 and note that
the resolution is now 320 by 204 pix­
els, with 2 bits used per pixel.

Details of Zgrass Control Struc­
tures

Programs in Zgrass are called
macros. Macros are stored as ASCII
(American Standard Code for Infor­
mation Interchange). character strings
and normally contain executable
Zgrass commands. The fundamental
unit of execution in Zgrass is a com­
mand, which is either an assignment
statement or a function call.

Zgrass does not require declaration
of variable types (with the exception
of array dimensioning) . The software
automatically does all conversions

.� Mountain Hardware •,],_�·· i1 LEADERSHIP IN COMPUTER PERIPHERALS � A Division of Mountain Computer. Inc.
300 Harvey West 81\td .. Santa Cruz. CA 95060
(408) 429-8600

100 November 1980 © BYJ"E Publications Inc

that make sense based on the context.
Any argument can be a function call
whose returned value is converted to
whatever is needed, if at all possible.
L i t era l s , ind irec t references ,
variables, built-in commands, user­
defined commands, and user-defined
macros are all handled by the same
parser, so the syntax is very predict­
able . The fact that there are no
restrictions on name length helps to
produce easily read code.

User-Level Extensibility
Extensibility in Zgrass is achieved

in two major ways . First, you can
write macros which return values,
produce graphics, or ask questions;
or, through string-manipulation
primitives written by Barb Wilson,
you can generate other macros.
Macros use arguments in exactly the
same way as system commands, and
are even named and called like system
commands.

To reiterate, macros are simply
strings of ASCII characters. When a
macro is called, an MIB (Macro Invo­
cation Block) is automatically built. It
gives information on the invoking
function call, the passed-argument

Circle 61 on Inquiry card.

list, and pointers to local variables,
and provides room for the returned
value. MIBs form a stack which im­
plements the subroutining and block
structuring of the language. When the
macro returns, the MIB is deleted
along with the local variables and
unused literal arguments, if any, and
control is passed back to the caller.

If arguments are to be passed to a
macro, they are read by the normal
input command, and print statements
are suppressed as long as there are
arguments left. If no arguments are
present or an insufficient number are
passed, the print statements function
normally and the macro asks for
input from the terminal . This allows
macros to be used whether or not you
know the arguments wanted, with no
extra code by the author of the
macro.

Macros can also be executed in
parallel as background jobs. When
called and suffixed by a " . B", the
Macro Invocation Block is added to a
background linked list. After that,
the macro will run forever (it restarts
at the beginning when it tries to
return) until Control-C or the stop
command selectively kills it. Photo 2c
shows two sorting algorithms being
compared for execution speed in real
time, a tricky task in most languages,
easy in Zgrass.

· The background parallelism is
achieved by interleaving execution of
the macro statements. The MIB con­
tains all relevant context for execu­
tion, including a pointer to the next
command to execute, so switching
MIBs after each line has been com­
pleted is simple and gives the func­
tional parallelism. If there are five
background macros, each one gets a
line executed, in turn, round-robin
fashion. This construct is simple and
straightforward with no bizarre side­
effects except that unusually time­
consuming commands will make the
p a ra l l e l i s m t e m p o r a l l y s t e p
somewhat. Background interleaving
is easily understood and used even by
the most naive users .

Meanwhile, the keyboard is still
active . When the user types a com­
mand line, it is executed at a higher
priority than the background macros.
If the user initiates a macro at
keyboard level, it will finish befme
the background macros continue. In
any event, the keyboard overrides the
background, again in an obvious,
predictable way.

The user may also specify pro­
grams to run as the result of a clock
interrupt . When a macro call is suf­
fixed by a ".F", the Macro Invocation
Block is chained into a list that is
polled every 1/60 second. The user
sets the frequency of execution from 1
to 32, 768 sixtieths of a second. These
foreground macros execute on a
higher priority level than the
keyboard and background macros so
they will start up just about on time
(again, delayed only by a time­
consuming graphics command) .
Foreground macros allow a keyboard
command to be slipped in during con­
text switching.

Zgrass, then, has three effective
levels of priority with parallelism at
two of the three levels. Since the
Macro Invocation Block maintains all
context information, even recursive
programming is possible at any level.

One of the severe problems in
interpretive, extensible languages like
Zgrass is the overhead of parsing and
looking up names in name tables. For
this reason, Zgrass has a compiler
which eliminates the overhead and
dramatically increases speed. All the
automatic conversions, priority, and

parallelism continue to work. Com­
piling does eliminate some of the
interactive debugging features, so
you usually debug on the noncom­
piled version first.

Zgrass System Extensibility
Zgrass also allows extensibility at

the system-command level . A system
such as this should allow an experi­
enced programmer to write new com­
mands in assembler and interface
them to the system easily, certainly
without changing the EPROMs
(erasable, programmable read-only
memories) . A transfer vector in low
memory and a series of Z80 RST
(special restart subroutine-call) in­
structions allow communication with
about one hundred system routines
w:hich do parsing, type conversion,
graphics primitives, and so on.

Documentation explains what
these routines do, and anyone with a
cross assembler (or patience for hand
assembly) can write new commands
of which the system has no prior
knowledge. Such extensibility allows
virtually infinite variety of specialty
graphics commands, device drivers,
and so forth to be written and

SOFTWARE E N GI N E E RS
WE'RE KNOWN BY THE COM PANY WE KEEP.
Wescom, Inc. has joined with Rockwell I nternationa l . This move wi l l strengthen our a l­
ready envious industry standing. We are seeking bright professionals interested in a
career at the leading edge of the telecommun ications industry.

These positions require a BSEE or BSCS with a min imum of 1 -3 years software design
experience. Experience in control process ing, real t ime, and/or 8080 ASSEMBLY
language is considered a plus.

SYSTEMS SOFTWARE
Provide the design for new cal l processing features and systems, modular functional
descriptions and interfaces, software architectural and data base des ign.

OPERATING SYSTEMS SOFTWARE
Design and develop software that ma :ntains a system that's operated by stored pro­
gram control. Involvement also includes design and implementation of administrative
d iagnostic and fault recovery programs.

SOFTWARE METHODOLOGY
Explore and i ntitate software techniques for future switching systems develop­
ment. Areas of 1nterest include structured. design techniques, high-level languages,
documentation schemes and software test1ng mechanisms.

We offer a com petitive salary, generous benefits and the assurance that you' l l be in
good company with an innovative leader in the design, development and manufacture
of sophisticated telephone equ ipment and systems.

We are an equal opportun i ty employer. M inorities, women and handicapped are en­
couraged to apply. For more information, send a letter or resume, or cal l :
Dennis Kebrdle
Wascom, Inc.
Rockwell International
8245 S. Lemont Rd.
Downers Grove, I L 605 1 5
(3 1 2) 985-9000, ext. 2349

102 November 1980 © BYTE Publications Inc

��� Rockwell P.� International

. . . where science gets down to business

Circle 62 on Inquiry card.

distributed to others on audio tape,
disk, or over telephone lines. Terry
Disz wrote a debugging program used
as a disk-resident command for set­
ting break-points, dumping memory
and registers and so on. This capabili­
ty is not for everyone, but it's there.

The maximum size of one of these
user-written nonresident commands
is 4 K bytes. Since the typical Zgrass
machine has 30 K bytes of program­
mable memory, the amount of poten­
tial custom code is immense. All
housekeeping for storage allocation
and deletion, maintenance of tem­
porary scratch-pad areas and general
cleanup is done by system routines .
You only concentrate on the details,
obeying a few rules for writing
position-independent code.

One further type of extensibility is
easy to get. Zgrass has an extra
UART which talks to other com­
puters quite nicely. Larger computers
can send graphics and character data
to your Zgrass machine. Zgrass units
can even talk to one another at up to
19.2 k bps !

Error Handling, Debugging and
Automated Instruction

Zgrass was designed from the
beginning to be a language for writing
CAl (computer-aided instruction)
programs. In particular, it was
designed to be self-teaching to a fairly
high degree. When Zgrass is used as a
CAl system, the result of providing
parallelism, string manipulation, and
good error handling is that the stu­
dent always has the power of the
whole language to explore while the
author of the CAl programs is also in
control .

Since macros are character strings,
they can be built and executed. You
can take student input, make it into a
program (before the student even
knows how to edit), let parameters be
changed, show the results, and verify
certain classes of results both during
execution and after. The approaches
we have taken to Zgrass CAl are
beyond the scope of this article, so I
will just mention the system features
which make CAl possible.

Error-handling routines normally
generate error-message numbers on
the terminal. There are about sixty of
them and they are quite specific . Dur­
ing regular programming, they are
used in conjunction with single step­
ping, variable printing and other
debugging techniques to identify

problems. When teaching, however,
the CAl program must trap errors.
These fall into three types : syntax,
nontermination, and logic.

To trap syntax errors, you should
use the ONERROR command which
transfers the control to a diagnostic
section of the program that you, as a
CAl author, will have provided.
There you can get the error number,
the erroneous argument, and even the
entire ASCII text of the line in error
with the GETERROR command. You
can then explain the problem to the
user in whatever level of detail you
wish.

Indefinite loops are caught with the
LOOPMAX command which sets a
limit to the number of control
transfers (ie: skips and GOTOs) .
Once the limit is exceeded, an error is
generated and trapped as explained

Glossary

Color: The 256 col.ors availa.ble in
Zgrass fonn an abbreviated
spectrum. You can get four
colors on the screen at any one
time. The default colors are
white, red, green, and blue.
They are also known as color 0,
color 1, color 2, and color 3.
The values are stored in $LO,
$L1, $L2, and $L3 unless you
modify $HB to use the right-side
colors $RO, $R1, $R2, and $R3.

Color Map: The color map is the
way Zgrass translates color 0
thru color 3 to the 256 available
colors. The hardware looks at
the. values of $LO thru $L3
before it writes a pixel to ·the
screen. If it is writing a 0, it uses
the color stored in $LO; if it is
writing a 1, it uses the color
stored in $Ll, and so on. To
change the color map so 1 refers
to yellow instead of red, set $L1
to 127. There are actually two
color maps, the $Ls and the $Rs.
You get to the $Rs by setting
$HB.

Color Option: The possible values
for color option are 0 thru 15.
You may need to study your
truth tables for inclusive-OR
and exclusive-OR (XOR) logical
operations to really understand
what's going on. The following
is functionally true, however:

106 November 1980 © BYTE Publications Inc

earlier. So, you can catch nonter­
minating programs or be very
meticulous and require efficiency
from advanced students by lowering ·

the LOOPMAX appropriately.
Logic errors are trickier and the

general case is impossible . However,
if you choose suitable problems to
solve, you can do some very nice
verification. For graphic tasks, the
CMPARA command can check a stu­
dent's building of an image against a
prototype. The CAl author can tell if
the student's image is a proper subset
of the prototype and let it continue.
Once a stray pixel is written,
CMPARA returns a value of -2
which means the image is "mixed up, "
and you inform the student im­
mediately. This approach clearly falls
short of genuine artificial intelligence,
but it is nevertheless quite useful .

Color
Option Meaning

0

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

replace with color 0
(white)
replace with color 1 (red)
replace with color 2
(green)
replace with color 3
(blue)
don't draw (actually XOR
with 00)
XOR screen with color 1
(01 binary)
XOR screen with color 2
(10 binary)
XOR screen with color 3
(11 binary)
change red to white, blue
to green (clear bit 0)
change green to white,
blue to red (clear bit 1)
OR with 01 (if red or
white, stay red; if blue or
green, stay blue)
OR with 10 (if green or
white, 'stay green; if red
or blu?, stay blue)
replace with red only if
white were there
replace with green only if
white or red were there
increment the color there
by 1 (white to red, red to
green, green to blue, and
blue to white)
decrement the color there
by 1 (white to blue, red
to white, green to red,

,
and bJfle to green)

Several classes at the University of
Illinois at Chicago Circle have been
taught with great success using a
GRASS-coded prototype (called
GAIN, by Tom Towle) .

Conclusions
Zgrass is a language/system

designed to provide easy access to
computer graphics and, in general, to
computing. It has sophisticated real­
time structures and control capabili­
ty, and it's friendly, extensible, and
fun. The language is more efficient
than BASIC, more user-oriented than
FORTRAN or Pascal, and it has the
kind of language-control structures
that will help you create your mind's
fantastic visualizations on your video
screen with more ease than ever
before. •

Macro: A string that is suppesed to
contain legal Zgrass commands.
Most programrrzing lang,uages
call such things "programs" or
"subroutines, " but we call them
macros. Macros are effectively
user-defi n e d c o m ma nds ;
Macros can behave just like
commands in the sense that you
can pass arguments to macros
with the INPUT command and
return values with the RETURN
command. You define a macro
just like you define a string,
with an assignment to a name or
by using EDIT.

String: A collection of characters
(ie: numbers, letters, punctua­
ticm) delimited (ie: enclosed) by
single or double quotes i:Jr
balanced (ie: enclosed) by
brackets or braces. If you have
to use a string delim#er in a
string, make sure that it is
delimited by a. different string
delimiter or things will get very
confused. Most likely it will
consider the rest of your macro
as part of the string. Examples:

"THIS IS A LONGER STRING"
"PRINT A *B *C
SKlP - 1 ; . THIS STRING
COULD BE A NIACRO TOO"
[THIS IS HOW TO PUT A
QUOTE IN A STRING: " ' "]
[1234]
[1

Circle 65 on Inquiry card. ---+

